zhangguanzhang's Blog

kubelet 为系统配置预留资源

字数统计: 4.5k阅读时长: 22 min
2021/08/16

前情提要

我们环境有部分 pod 特殊,单独节点部署,oom 的时候会搞挂一些系统进程,这几天折腾了下配置了下 kubelet 相关的 reserved。主要是 kubelet 的配置文件一些参数,不写 systemd 里,全部写配置文件里。版本是如下,因为我们不单单是 x86_64 ,由于还有其他的架构以及会部署在客户的现场,为了减少维护,所以我们都是除了 flanneldcoredns 以外。k8s 相关的二进制的形式部署的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
$ kubectl version -o json
{
"clientVersion": {
"major": "1",
"minor": "20",
"gitVersion": "v1.20.6",
"gitCommit": "8a62859e515889f07e3e3be6a1080413f17cf2c3",
"gitTreeState": "clean",
"buildDate": "2021-04-15T03:28:42Z",
"goVersion": "go1.15.10",
"compiler": "gc",
"platform": "linux/amd64"
},
"serverVersion": {
"major": "1",
"minor": "20",
"gitVersion": "v1.20.6",
"gitCommit": "8a62859e515889f07e3e3be6a1080413f17cf2c3",
"gitTreeState": "clean",
"buildDate": "2021-04-15T03:19:55Z",
"goVersion": "go1.15.10",
"compiler": "gc",
"platform": "linux/amd64"
}
}

阅读本篇文章之前,推荐先浏览器同时打开这两篇官方文档后稍微看完再看本篇文章:

相关说明

相关术语就是 enforceNodeAllocatable ,它的默认值是 ["pods"] ,也就是 pod 能够使用节点上所有资源。但是节点上除了自己以外还有 kubelet ,kube 的三个组件,container runtime engine,以及 systemd 纳管的一些系统进程。如果有个 node 达到资源满了被驱逐,可能会漂移到其他节点上,把其他节点也搞挂了,形成连锁雪崩的情况。根据 官方文档最开始的设计 一个 node 的 allocate 为下面的情况,Allocatable 为 pod 的:

1
[Allocatable] = [Node Capacity] - [Kube-Reserved] - [System-Reserved] - [Hard-Eviction-Threshold]

转换下就是:

1
[Node Capacity] = [Allocatable] + [Kube-Reserved] + [System-Reserved] + [Hard-Eviction-Threshold]

节点上的 Allocatable 被定义为 pod 的可用计算资源量。 调度器不会超额申请 Allocatable。 目前支持 CPU, memoryephemeral-storage 这几个参数。上面的 Hard-Eviction 是有默认值的。而由于下面默认值,我们需要加上 kube 和 system 的 reserved 。

1
2
3
4
enforceNodeAllocatable:
- pods
- kube-reserved
- system-reserved

尝试

加了上面俩后发现不生效,最后去看 yaml 里相关设置的参考后以及部分源码后摸索出来了。但是其实官方这块是有文档的: 官方文档最初的设计文档

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
enforceNodeAllocatable:
- pods
- kube-reserved
- system-reserved
evictionHard:
imagefs.available: "15%"
memory.available: "200Mi"
nodefs.available: "10%"
nodefs.inodesFree: "5%"
kubeReserved:
{% if inventory_hostname in groups['kube_master'] %}
cpu: 400m
memory: 896Mi
{% else %}
cpu: 100m
memory: 256Mi
{% endif %}
ephemeral-storage: 500Mi
systemReserved:
memory: 1Gi
cpu: 500m
ephemeral-storage: 2Gi

这个模板判断的灵感是来源于 kubespray ,defaults/main.ymltemplates/kubelet-config.v1beta1.yaml.j2
我们环境都是二进制,所以 master 上 kube 会多配置些。但是这样配置了看了下无法生效,看了下必须要配置 cgroup path。也就是下面的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
enforceNodeAllocatable:
- pods
- kube-reserved
- system-reserved
evictionHard:
imagefs.available: "15%"
memory.available: "200Mi"
nodefs.available: "10%"
nodefs.inodesFree: "5%"
kubeReserved:
{% if inventory_hostname in groups['kube_master'] %}
cpu: 400m
memory: 896Mi
{% else %}
cpu: 100m
memory: 256Mi
{% endif %}
ephemeral-storage: 500Mi

kubeReservedCgroup: /kube.slice
systemReserved:
memory: 1Gi
cpu: 500m
ephemeral-storage: 2Gi
systemReservedCgroup: /system.slice

根据官方文档的示例值是俩不同的 path,但是市面上有不少人这方面的文章互相抄袭,他们会把 kubeReservedCgroup: /system.slice/kube.slice 嵌套下。配置了上面的后会发现依然无法启动报错下面的:

1
Failed to start ContainerManager Failed to enforce Kube Reserved Cgroup Limits on "/kube.slice": ["kubelet"] cgroup does not exist

最后找了下相关源码 pkg/kubelet/cm/cgroup_manager_linux.go 的 func (m *cgroupManagerImpl) Exists(name CgroupName) bool 方法,我们只关心下面的几个 cgroup 就行了:

1
2
3
4
5
allowlistControllers := sets.NewString("cpu", "cpuacct", "cpuset", "memory", "systemd", "pids")

if _, ok := m.subsystems.MountPoints["hugetlb"]; ok {
allowlistControllers.Insert("hugetlb")
}

市面上都是手动创建的不推荐,推荐在 kubelet 的 service 加个 ExecStartPre 和脚本判断处理。

最终配置

kubelet 的 service 文件参考:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=docker.service
Requires=docker.service

[Service]
WorkingDirectory={{ data_dir }}/kube/kubelet
ExecStartPre=/bin/bash {{ data_dir }}/kube/kubelet/kubelet-cg.sh
ExecStart={{ bin_dir }}/kubelet \
--config={{ data_dir }}/kube/kubelet/kubelet-config.yaml \
--root-dir={{ data_dir }}/kube/kubelet \
--docker-root={{ data_dir }}/kube/docker \
--cni-bin-dir={{ bin_dir }} \
--cni-conf-dir=/etc/cni/net.d \
--hostname-override={{ inventory_hostname }} \
--kubeconfig=/etc/kubernetes/kubelet.kubeconfig \
--network-plugin=cni \
--experimental-dockershim-root-directory={{ data_dir }}/kube/dockershim \
--pod-infra-container-image=registry.aliyuncs.com/k8sxio/pause:3.5 \
--register-node=true \
--v=2 \
--node-ip={{ inventory_hostname }}

Restart=always
RestartSec=5

[Install]
WantedBy=multi-user.target

我们的环境目前还是 cgroupfs , systemd 的可能需要你自己去摸索了。下面是 kubelet-cg.shkubelet-config.yaml:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/kubelet/config/v1beta1/types.go
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
# Default: []
allowedUnsafeSysctls: []
address: {{ inventory_hostname }}
authentication:
anonymous:
enabled: false
webhook:
cacheTTL: 2m0s
enabled: true
x509:
clientCAFile: {{ ca_dir }}/ca.pem
authorization:
mode: Webhook
webhook:
cacheAuthorizedTTL: 5m0s
cacheUnauthorizedTTL: 30s
tlsCertFile: {{ ca_dir }}/kubelet.pem
tlsPrivateKeyFile: {{ ca_dir }}/kubelet-key.pem
cgroupDriver: cgroupfs
cgroupsPerQOS: true
clusterDNS:
- {{ CLUSTER_DNS_SVC_IP }}
clusterDomain: {{ CLUSTER_DNS_DOMAIN }}
configMapAndSecretChangeDetectionStrategy: Watch
containerLogMaxFiles: 5
containerLogMaxSize: 10Mi
contentType: application/vnd.kubernetes.protobuf
cpuCFSQuota: true
# Default: "100ms" The value must be between 1 us and 1 second
cpuCFSQuotaPeriod: 100ms
cpuManagerPolicy: none
cpuManagerReconcilePeriod: 10s
enableControllerAttachDetach: true
# Default: true
enableDebuggingHandlers: true
# Default: true
enableSystemLogHandler: true
# Default: ["pods"]
# https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/node-allocatable.md
# pkg/kubelet/cm/node_container_manager_linux.go:67
enforceNodeAllocatable:
- pods
- kube-reserved
- system-reserved
# Default: 10
eventBurst: 100
# Default: 5
eventRecordQPS: 50
# Default:
# memory.available: "100Mi"
# nodefs.available: "10%"
# nodefs.inodesFree: "5%"
# imagefs.available: "15%"
evictionHard:
imagefs.available: "15%"
memory.available: "200Mi"
nodefs.available: "10%"
nodefs.inodesFree: "5%"
evictionPressureTransitionPeriod: 5m0s
failSwapOn: true
# Default: "20s"
fileCheckFrequency: 10s
# Default: "promiscuous-bridge"
hairpinMode: promiscuous-bridge
healthzPort: 10248
# Default: "127.0.0.1"
healthzBindAddress: {{ inventory_hostname }}
# Default: "20s", staticPodUrl 才有用
httpCheckFrequency: 0s
imageGCHighThresholdPercent: 85
imageGCLowThresholdPercent: 80
imageMinimumGCAge: 2m0s
# Default: 15
iptablesDropBit: 15
# Default: 14
iptablesMasqueradeBit: 14
# Default: 10
kubeAPIBurst: 100
# Default: 5
kubeAPIQPS: 50
# https://kubernetes.io/zh/docs/tasks/administer-cluster/reserve-compute-resources/
# https://github.com/kubernetes-sigs/kubespray/blob/master/roles/kubernetes/node/defaults/main.yml
# https://github.com/kubernetes-sigs/kubespray/blob/master/roles/kubernetes/node/templates/kubelet-config.v1beta1.yaml.j2
# Default: nil
kubeReserved:
{% if inventory_hostname in groups['kube_master'] %}
cpu: 400m
memory: 896Mi
{% else %}
cpu: 100m
memory: 256Mi
{% endif %}
ephemeral-storage: 500Mi
# pkg/kubelet/cm/cgroup_manager_linux.go:257 func (m *cgroupManagerImpl) Exists(name CgroupName) bool {
kubeReservedCgroup: /kube.slice
systemReserved:
memory: 1Gi
cpu: 500m
ephemeral-storage: 2Gi
systemReservedCgroup: /system.slice
makeIPTablesUtilChains: true
# Default: 1000000
maxOpenFiles: 1000000
# Default: 110
{% set nodeLen = groups['kube_node'] | length %}
{% if nodeLen == 1 %}
maxPods: 253
{% elif nodeLen < 3 %}
maxPods: 200
{% elif nodeLen >= 3 and nodeLen <=6 %}
maxPods: 150
{% else %}
maxPods: 110
{% endif %}
# Default: 40
nodeLeaseDurationSeconds: 40 # 看源码乘以了0.25 作为更新间隔了
# Default: "5m" # 节点状态没有更改时候的上报频率,如果有更改就立即更新。NodeLease 启用下它才有用。如果设置了 nodeStatusUpdateFrequency 则它的默认值等于它来向后兼容
nodeStatusReportFrequency: 1m0s
nodeStatusUpdateFrequency: 10s
oomScoreAdj: -999
podPidsLimit: -1
port: 10250
readOnlyPort: 0
# Default: 10
registryBurst: 20
# Default: 5
registryPullQPS: 10
resolvConf: {% if ansible_distribution == "Ubuntu" and ansible_distribution_major_version|int > 16 %}/run/systemd/resolve/resolv.conf
{% else %}/etc/resolv.conf
{% endif %}
rotateCertificates: true
# Default: "2m"
runtimeRequestTimeout: 2m0s
serializeImagePulls: true
staticPodPath: /etc/kubernetes/manifests
# Default: "4h"
streamingConnectionIdleTimeout: 20m0s

# shutdownGracePeriod: 30s
# shutdownGracePeriodCriticalPods: 10s # 1.21后的特性

# Default: "1m" # sync for ConfigMaps and Secrets.
syncFrequency: 1m0s
volumeStatsAggPeriod: 1m0s
volumePluginDir: /usr/libexec/kubernetes/kubelet-plugins/volume/exec/
tlsCipherSuites:
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_RSA_WITH_AES_256_CBC_SHA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#!/bin/bash
function check_and_create(){
# pkg/kubelet/cm/cgroup_manager_linux.go:257 func (m *cgroupManagerImpl) Exists(name CgroupName) bool {
local cg_controller=$1
if mountpoint -q /sys/fs/cgroup/${cg_controller};then
mkdir -p /sys/fs/cgroup/${cg_controller}/system.slice
mkdir -p /sys/fs/cgroup/${cg_controller}/kube.slice
fi
}

check_and_create cpu
check_and_create cpuacct
check_and_create cpuset
check_and_create memory
check_and_create systemd
check_and_create pids
check_and_create hugetlb

关于 pod 数量这块和大佬讨论了下,maxPods 大了的话实际上例如 docker 撑不住,所以没必要太大,我的判断逻辑是节点数量少的时候也就是我们内部的测试环境下,pod 数量调大,客户现场还是推荐的 110。

2021/08/23 内部很多机器配置不一致,然后上面的配置会导致起不来,而且我理解错了 enforceNodeAllocatable 的意思了,我以为它是开关,实际上是给这几个创建 cgroup。reserved 配置了就会减去分配的配额,它开了就会强制 cgroup 限制 kube 和 systemd 来预留,也是不推荐配置的。取消它的配置为下面相关:

1
2
3
4
5
6
#ExecStartPre=/bin/bash {{ data_dir }}/kube/kubelet/kubelet-cg.sh

enforceNodeAllocatable:
- pods
# - kube-reserved
# - system-reserved

oom killer

当系统内存不足时候,内核会调用 oom-killer 来选择讲一些进程杀掉,以便能回收一些内存,尽量继续保持系统继续运行。具体选择哪个进程杀掉,这有一套算分的策略,参考因子是进程占用的内存数,进程页表占用的内存数等,oom_score_adj 的值越小,进程得分越少,也就越难被杀掉。它的计算公式大概类似下面,oom_score的取值为[0,1000],而 oom_score_adj 的取值为[-1000,1000] ,oom_score_adj 是给我们调整的,例如我们不希望某些进程被 oom-killer 杀掉,可以调整它的 oom_score_adj-1000

1
oom_score = 内存消耗/总内存 *1000 # 这个不完全对,实际还有 cpu 实际和存活时间

其中
内存消耗包括了:常驻内存RSS + 进程页面 +交换内存
总内存就简单了:总的物理内存 +交换分区

k8s 的 qosClass

Kubernetes 创建 Pod 时就给它指定了下列三种 QoS 类

  • Guaranteed - limit 的 cpu 和 memory 必须设置,并且 request cpu 和 limit 下 cpu 要一样数值,memory 也一样。只设置 limit 的 cpu 和 memory,k8s 会设置与之一样的 requests
  • Burstable - 不满足 Guaranteed ,并且 Pod 中至少一个容器具有 memory 或 CPU 请求,limit 和 request 里的 cpu 或者 内存请求数值相等和不相等都没关系
  • BestEffort - 所有容器都没有设置 memory 和 CPU 限制或请求

查看了下,目前我们所有业务 pod 都没配置限制,也就是 BestEffort。下面命令查看 ns 下 pod 的 qosClass

1
kubectl get pod -o yaml | grep qosClass

节点 OOM 行为和 qosClass 的 oom_score_adj

根据官方文档,节点 oom 的行为 为:

如果节点在 kubelet 回收内存之前经历了系统 OOM(内存不足)事件,它将基于 oom-killer 做出响应。

kubelet 基于 pod 的 service 质量为每个容器设置一个 oom_score_adj 值,这个值在容器创建的时候设置的。

Service 质量 oom_score_adj
Guaranteed -997
Burstable min(max(2, 1000 - (1000 * memoryRequestBytes) / machineMemoryCapacityBytes), 999)
BestEffort 1000

如果 kubelet 在节点经历系统 OOM 之前无法回收内存,oom_killer 将基于它在节点上
使用的内存百分比算出一个 oom_score,并加上 oom_score_adj 得到容器的有效
oom_score,然后结束得分最高的容器。

预期的行为应该是拥有最低服务质量并消耗和调度请求相关内存量最多的容器第一个被结束,以回收内存。

和 pod 驱逐不同,如果一个 Pod 的容器是被 OOM 结束的,基于其 RestartPolicy
它可能会被 kubelet 重新启动。

在文件 pkg/kubelet/kuberuntime/kuberuntime_container_linux.go 里的 generateLinuxContainerConfigGetContainerOOMScoreAdjust 可以去了解更多细节。

主要是 oomScoreAdjust := 1000 - (1000 * container.Resources.Requests.Memory().Value())/memoryCapacity
memoryCapacity 是机器的物理内存大小,而不是减去预留后的。最小值就是避免 memoryRequest / 机器内存 趋近于 0 ,最大值避免 oomScoreAdjust 等于了最大值 1000 了。 kubelet 和 docker 通常会把他们自身的 oom_score_adj 设置为 -999

可以得出一个结论:在非 Guaranteed 和 request 和 limit 为空的 BestEffort 以外,request 内存越大则 oom_score_adj 越小。oom_score_adj 越小, oom 的时候最不会被 oom-kill 杀掉。

测试

在 32G 的机器上,空闲占用 1G ,我们部署几个 pod 都分为三个 qos 组,每个 都是 12G 的内存请求,看看哪个最先被杀掉 :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
apiVersion: v1
kind: Pod
metadata:
name: stress-12-guaranteed
spec:
nodeName: xx.xx.82.174
containers:
- name: ctr
image: registry.aliyuncs.com/zhangguanzhang/stress-ng:0.13.03
command:
- sh
- -c
- |
cp stress-ng /stress-12-Guaranteed
exec /stress-12-Guaranteed --vm 4 --vm-bytes 12G
resources:
limits:
memory: "13Gi"
cpu: "300m"
---
apiVersion: v1
kind: Pod
metadata:
name: stress-12-burstable
spec:
nodeName: xx.xx.82.174
containers:
- name: ctr
image: registry.aliyuncs.com/zhangguanzhang/stress-ng:0.13.03
command:
- sh
- -c
- |
cp stress-ng /stress-12-Burstable
exec /stress-12-Burstable --vm 4 --vm-bytes 12G
resources:
requests:
memory: "10Mi"
---
apiVersion: v1
kind: Pod
metadata:
name: stress-12-besteffort
spec:
nodeName: xx.xx.82.174
containers:
- name: ctr
image: registry.aliyuncs.com/zhangguanzhang/stress-ng:0.13.03
command:
- sh
- -c
- |
cp stress-ng /stress-12-BestEffort
exec /stress-12-BestEffort --vm 4 --vm-bytes 12G
---

创建完后,通过系统日志查看是对的,oom-killer 杀掉的确实是 stress-12-besteffort

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
[80389.171797] Memory cgroup out of memory: Kill process 27672 (stress-12-BestE) score 1105 or sacrifice child
[80389.202470] Killed process 27672 (stress-12-BestE), UID 0, total-vm:3189272kB, anon-rss:3145848kB, file-rss:4kB, shmem-rss:8kB
[80391.538015] stress-12-BestE invoked oom-killer: gfp_mask=0xd0, order=0, oom_score_adj=1000
[80391.538021] stress-12-BestE cpuset=597912cbecd66eccbd66c62dfd354bf5497db8e27a5bb04672ee5a84f217fbff mems_allowed=0-3
[80391.538026] CPU: 6 PID: 27991 Comm: stress-12-BestE Kdump: loaded Tainted: G ------------ T 3.10.0-1127.el7.x86_64 #1
[80391.538028] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 09/21/2015
[80391.538030] Call Trace:
[80391.538041] [<ffffffff8497ff85>] dump_stack+0x19/0x1b
[80391.538045] [<ffffffff8497a8a3>] dump_header+0x90/0x229
[80391.538051] [<ffffffff8449c4a8>] ? ep_poll_callback+0xf8/0x220
[80391.538057] [<ffffffff843c246e>] oom_kill_process+0x25e/0x3f0
[80391.538062] [<ffffffff84333a41>] ? cpuset_mems_allowed_intersects+0x21/0x30
[80391.538067] [<ffffffff84440ba6>] mem_cgroup_oom_synchronize+0x546/0x570
[80391.538071] [<ffffffff84440020>] ? mem_cgroup_charge_common+0xc0/0xc0
[80391.538075] [<ffffffff843c2d14>] pagefault_out_of_memory+0x14/0x90
[80391.538078] [<ffffffff84978db3>] mm_fault_error+0x6a/0x157
[80391.538082] [<ffffffff8498d8d1>] __do_page_fault+0x491/0x500
[80391.538086] [<ffffffff8498d975>] do_page_fault+0x35/0x90
[80391.538091] [<ffffffff84989778>] page_fault+0x28/0x30

再测试下下面这种内存大小不一致的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
apiVersion: v1
kind: Pod
metadata:
name: stress-20-guaranteed
spec:
nodeName: xx.xx.82.174
containers:
- name: ctr
image: registry.aliyuncs.com/zhangguanzhang/stress-ng:0.13.03
command:
- sh
- -c
- |
cp stress-ng /stress-20-Guaranteed
exec /stress-20-Guaranteed --vm 4 --vm-bytes 20G
resources:
limits:
memory: "24Gi"
cpu: "4000m"

---
apiVersion: v1
kind: Pod
metadata:
name: stress-8-burstable
spec:
nodeName: xx.xx.82.174
containers:
- name: ctr
image: registry.aliyuncs.com/zhangguanzhang/stress-ng:0.13.03
command:
- sh
- -c
- |
cp stress-ng /stress-8-Burstable
exec /stress-8-Burstable --vm 4 --vm-bytes 8G
resources:
requests:
memory: "300Mi"
---
apiVersion: v1
kind: Pod
metadata:
name: stress-4-besteffort
spec:
nodeName: xx.xx.82.174
containers:
- name: ctr
image: registry.aliyuncs.com/zhangguanzhang/stress-ng:0.13.03
command:
- sh
- -c
- |
cp stress-ng /stress-4-BestEffort
exec /stress-4-BestEffort --vm 2 --vm-bytes 4G
---

查看日志,stress-20-Guara 被杀掉了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Sep 28 09:54:39 82-174-zhang kernel: [140244.941467] stress-20-Guara invoked oom-killer: gfp_mask=0x50, order=0, oom_score_adj=1000
Sep 28 09:54:39 82-174-zhang kernel: [140244.941472] stress-20-Guara cpuset=4be3661456aa74304875c3a00646851baea21be3e0667e84dad7ae812d3d0169 mems_allowed=0-3
Sep 28 09:54:39 82-174-zhang kernel: [140244.941476] CPU: 8 PID: 10195 Comm: stress-20-Guara Kdump: loaded Tainted: G ------------ T 3.10.0-1127.el7.x86_64 #1
Sep 28 09:54:39 82-174-zhang kernel: [140244.941478] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 09/21/2015
Sep 28 09:54:39 82-174-zhang kernel: [140244.941479] Call Trace:
Sep 28 09:54:39 82-174-zhang kernel: [140244.941492] [<ffffffff8497ff85>] dump_stack+0x19/0x1b
Sep 28 09:54:39 82-174-zhang kernel: [140244.941495] [<ffffffff8497a8a3>] dump_header+0x90/0x229
Sep 28 09:54:39 82-174-zhang kernel: [140244.941502] [<ffffffff8449c4a8>] ? ep_poll_callback+0xf8/0x220
Sep 28 09:54:39 82-174-zhang kernel: [140244.941508] [<ffffffff843c246e>] oom_kill_process+0x25e/0x3f0
Sep 28 09:54:39 82-174-zhang kernel: [140244.941512] [<ffffffff84333a41>] ? cpuset_mems_allowed_intersects+0x21/0x30
Sep 28 09:54:39 82-174-zhang kernel: [140244.941518] [<ffffffff84440ba6>] mem_cgroup_oom_synchronize+0x546/0x570
Sep 28 09:54:39 82-174-zhang kernel: [140244.941520] [<ffffffff84440020>] ? mem_cgroup_charge_common+0xc0/0xc0
Sep 28 09:54:39 82-174-zhang kernel: [140244.941523] [<ffffffff843c2d14>] pagefault_out_of_memory+0x14/0x90
Sep 28 09:54:39 82-174-zhang kernel: [140244.941525] [<ffffffff84978db3>] mm_fault_error+0x6a/0x157
Sep 28 09:54:39 82-174-zhang kernel: [140244.941529] [<ffffffff8498d8d1>] __do_page_fault+0x491/0x500
Sep 28 09:54:39 82-174-zhang kernel: [140244.941531] [<ffffffff8498d975>] do_page_fault+0x35/0x90
Sep 28 09:54:39 82-174-zhang kernel: [140244.941534] [<ffffffff84989778>] page_fault+0x28/0x30
Sep 28 09:54:39 82-174-zhang kernel: [140244.941538] Task in /kubepods/podff2a4320-67f9-4afc-b1a8-0aa39caa8904/4be3661456aa74304875c3a00646851baea21be3e0667e84dad7ae812d3d0169 killed as a result of limit of /kubepods
Sep 28 09:54:39 82-174-zhang kernel: [140244.941540] memory: usage 29763384kB, limit 29763384kB, failcnt 734923
Sep 28 09:54:39 82-174-zhang kernel: [140244.941542] memory+swap: usage 29763384kB, limit 9007199254740988kB, failcnt 0
Sep 28 09:54:39 82-174-zhang kernel: [140244.941543] kmem: usage 0kB, limit 9007199254740988kB, failcnt 0

按理说不应该被杀掉。查看下进程的 oom_score_adj

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
$ ps aux | grep stress-20-Guar[a]
root 10146 0.0 0.0 43540 2468 ? Ss 09:54 0:00 /stress-20-Guaranteed --vm 4 --vm-bytes 20G
root 10181 0.0 0.0 43544 308 ? S 09:54 0:00 /stress-20-Guaranteed --vm 4 --vm-bytes 20G
root 10184 0.0 0.0 43544 272 ? S 09:54 0:00 /stress-20-Guaranteed --vm 4 --vm-bytes 20G
root 10186 0.0 0.0 43544 276 ? S 09:54 0:00 /stress-20-Guaranteed --vm 4 --vm-bytes 20G
root 10188 0.1 0.0 43544 348 ? S 09:54 0:00 /stress-20-Guaranteed --vm 4 --vm-bytes 20G
root 11024 99.7 15.9 5286424 5243196 ? R 09:56 1:23 /stress-20-Guaranteed --vm 4 --vm-bytes 20G
root 11491 98.6 15.9 5286424 5243164 ? R 09:57 0:23 /stress-20-Guaranteed --vm 4 --vm-bytes 20G
root 11539 103 15.9 5286424 5243168 ? R 09:57 0:16 /stress-20-Guaranteed --vm 4 --vm-bytes 20G
root 11610 101 15.9 5286424 5243192 ? R 09:57 0:09 /stress-20-Guaranteed --vm 4 --vm-bytes 20G
$ pstree -sp 10146
systemd(1)───dockerd(751)───containerd(838)───containerd-shim(10099)───stress-20-Guara(10146)─┬─stress-20-Guara(10181)───stress-20-Guara(11610)
├─stress-20-Guara(10184)───stress-20-Guara(11491)
├─stress-20-Guara(10186)───stress-20-Guara(11539)
└─stress-20-Guara(10188)───stress-20-Guara(11024)
$ cat /proc/11024/oom_score
1160
$ cat /proc/11024/oom_score_adj
1000
$ cat /proc/10146/oom_score
0
$ cat /proc/10146/oom_score_adj
-997

docker run 个看看 oom_score_adj

1
2
3
4
5
$ docker run -d --name test  --oom-score-adj -998 nginx:alpine
$ docker exec test cat /proc/*/oom_score_adj
-998
-998
...

最后稍微看了下 stress-ng 源码 发现了 stress-ng 会设置子进程的 oom_score_adj 成 1000。容器里进程只能增加 oom_score_adj ,不能减少,stress-ng 这块应该是没考虑到容器的情况,已经反馈 issue 了。

no-oom-adjust

stress-ng 的作者经过 issue反馈后 添加了 --no-oom-adjust 选项了,可以继续上面的测试了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
apiVersion: v1
kind: Pod
metadata:
name: stress-20-guaranteed
spec:
nodeName: xx.xx.82.174
containers:
- name: ctr
image: registry.aliyuncs.com/zhangguanzhang/stress-ng:temp
command:
- sh
- -c
- |
cp stress-ng /stress-20-Guaranteed
exec /stress-20-Guaranteed --vm 4 --vm-bytes 20G --no-oom-adjust
resources:
limits:
memory: "22Gi"
cpu: "4000m"
---
apiVersion: v1
kind: Pod
metadata:
name: stress-8-burstable
spec:
nodeName: xx.xx.82.174
containers:
- name: ctr
image: registry.aliyuncs.com/zhangguanzhang/stress-ng:temp
command:
- sh
- -c
- |
cp stress-ng /stress-8-Burstable
exec /stress-8-Burstable --vm 4 --vm-bytes 8G --no-oom-adjust
resources:
requests:
memory: "300Mi"
---
apiVersion: v1
kind: Pod
metadata:
name: stress-4-besteffort
spec:
nodeName: xx.xx.82.174
containers:
- name: ctr
image: registry.aliyuncs.com/zhangguanzhang/stress-ng:temp
command:
- sh
- -c
- |
cp stress-ng /stress-4-BestEffort
exec /stress-4-BestEffort --vm 2 --vm-bytes 4G --no-oom-adjust
---

apply 后机器上日志最先 oom 的是 4G 这个:

1
2
Oct 11 10:38:03 82-174-zhang kernel: [1266038.261910] Memory cgroup out of memory: Kill process 7017 (stress-4-BestEf) score 1070 or sacrifice child
Oct 11 10:38:03 82-174-zhang kernel: [1266038.267444] Killed process 7017 (stress-4-BestEf), UID 0, total-vm:2140696kB, anon-rss:2097272kB, file-rss:8kB, shmem-rss:4kB

相关推荐阅读

参考

CATALOG
  1. 1. 前情提要
    1. 1.1. 相关说明
  2. 2. 尝试
  3. 3. 最终配置
  4. 4.
  5. 5. oom killer
    1. 5.1. k8s 的 qosClass
    2. 5.2. 节点 OOM 行为和 qosClass 的 oom_score_adj
  6. 6. 测试
    1. 6.1. no-oom-adjust
  7. 7. 相关推荐阅读
  8. 8. 参考